Tricks for cleaning your data in R

By Christine Zhang (ychristinezhang at gmail dot com)
Storytelling with Data Workshop at Boston University (June 6, 2017)

GitHub repository for Data+Code: https://github.com/underthecurve/r-data-cleaning-tricks

Data cleaning is a cumbersome task, and it can be hard to navigate in programming languages like R. When
I was first learning R, T relied on familiar tools like Excel to clean my datasets before importing them into R
to run analyses. This approach was often not ideal because it became hard to retrace my footsteps when I
wanted to check my work. I always believed it would be better to have everything in one place, so I was
motivated to learn how to clean my data in R.

R is a powerful tool for data cleaning and analysis. By default, it leaves a trail of code that documents all
the work you’ve done, which makes it extremely useful for creating reproducible workflows.

In this workshop, I’ll show you some examples of real-life “messy” datasets, the problems they
present for analysis in R, and the “tidy” solutions to these problems.

Underlying this workshop is Hadley Wickham’s principle of Tidy Data, which you can read about here.

1. Finding and replacing non-numeric characters like , and $
Since we’re in Boston, let’s check out the city’s Open Data portal, where the local government puts up
datasets that are free for the public to analyze.

The Employee Earnings Report is one of the more interesting ones, because it gives payroll data for every
person on the municipal payroll. It’s where the Boston Globe gets stories like these every year:

e “64 City of Boston workers earn more than $250,000” (February 6, 2016)
o “Police detective tops Boston’s payroll with a total of over $403,000” (February 14, 2017)
Let’s take at the February 14 story from this year. The story begins:

“A veteran police detective took home more than $403,000 in earnings last year, topping the list
of Boston’s highest-paid employees in 2016, newly released city payroll data show.”

What if we wanted to check this number using the Employee Earnings Report?

We can use the read.csv() to load the csv file into R. We will call this data frame salary.

salary <- read.csv('employee-earnings-report-2016.csv')

We can use the head () function to inspect the first six rows of salary:

head(salary)

#i# NAME DEPARTMENT_NAME

1 Abadi,Kidani A Assessing Department

2 Abasciano, Joseph Boston Police Department

3 Abban,Christopher John Boston Fire Department

4 Abbasi,Sophia Green Academy

5 Abbate-Vaughn,Jorgelina BPS Ellis Elementary

6 Abberton,James P Public Works Department

TITLE REGULAR RETRO OTHER OVERTIME
1 Property Officer $46,291.98 $300.00

2 Police Officer $6,933.66 $850.00 $205.92
3 Fire Fighter $103,442.22 $550.00 $15,884.53

https://twitter.com/christinezhang
https://github.com/underthecurve/r-data-cleaning-tricks
http://hadley.nz/
http://vita.had.co.nz/papers/tidy-data.html
https://data.boston.gov/
https://data.boston.gov/dataset/employee-earnings-report
https://www.bostonglobe.com/metro/2016/02/05/city-boston-workers-earn-more-than/MvW6RExJZimdrTlwdwUI7M/story.html
https://www.bostonglobe.com/metro/2017/02/14/police-detective-tops-boston-payroll-with-total-over/6PaXwTAHZGEW5djgwCJuTI/story.html

#t 4 Manager (C) (non-ac) $18,249.83

5 Teacher $84,410.28 $1,250.00

6 Maint Mech (Carpenter)## $41,449.16 $81.00 $8,807.47

INJURED DETAIL QUINN.EDUCATION.INCENTIVE TOTAL.EARNINGS POSTAL
1 $46,591.98 02118
2 $74,331.86 $15,258.44 $97,579.88 02132
3 $4,746.50 $124,623.25 02132
4 $18,249.83 02148
5 $85,660.28 02481
6 $50,337.63 02127

There are a lot of columns. Let’s simplify by selecting the ones of interest: NAME, DEPARTMENT_NAME, and
TOTAL.EARNINGS. We can do this using the select () function in dplyr. We will save them into a new data
frame, salary.selected.

We load the dplyr package using library('dplyr'):
install.packages('dplyr') # if you don't already have the package
library('dplyr') # load the dplyr package

salary.selected <- select(salary, # the data frame
NAME, DEPARTMENT_NAME, TOTAL.EARNINGS) # the wariables to select

We can also change these names to lowercase names for easier typing using tolower ():

names (salary.selected) <- tolower(names(salary.selected)) # change variable names to lowercase

Let’s use head () to visually inspect the first six rows of salary.selected:

head(salary.selected)

name department_name total.earnings
1 Abadi,Kidani A Assessing Department $46,591.98
2 Abasciano, Joseph Boston Police Department $97,579.88
3 Abban,Christopher John Boston Fire Department $124,623.25
4 Abbasi,Sophia Green Academy $18,249.83
5 Abbate-Vaughn, Jorgelina BPS Ellis Elementary $85,660.28
6 Abberton,James P Public Works Department $50,337.63

Now let’s try sorting the data by total.earnings using the arrange () function in dplyr:

salary.sort <- arrange(salary.selected, # dataset to sort
total.earnings) # wvariable to sort by

We can use head () to visually inspect salary.sort:

head(salary.sort)

name department_name total.earnings
1 Fowlkes,Lorraine E. Boston City Council $1,000.00
#i# 2 Lally,Bernadette Boston City Council $1,000.00
3 Nolan,Andrew Parks Department $1,000.00
4 White-Pilet,Yoni A BPS Substitute Teachers/Nurs $1,006.53
5 Dunn,Lori D BPS East Boston High $1,010.05
6 Hopkins,Susan R BPS Mather Elementary $1,017.94

What went wrong?

The problem is that there are non-numeric characters, , and $, in the total.earnings column. We can see
with class() that total.earnings is recognized as factor rather than numeric.

class(salary.selected$total.earnings)

[1] "factor"

We need to find the , and $ in total.earnings and remove them—in computer science lingo, “pattern
matching and replacement.” The str_replace function in the stringr package lets us do this easily.

Let’s start by removing the comma and write the result to the original column. (The format for calling a
column from a data frame in R is data frame.name$column.name)
We load the stringr package using library('stringr'):

install.packages('stringr') # i1f you don't already have the package
library('stringr') # load the stringr package

salary.selected$total.earnings <- str_replace(
salary.selected$total.earnings, # column we want to search
pattern = ',', # what to find
replacement = '' # what to replace it with

)

Using head () to visually inspect salary.selected, we see that the commas are gone:

head(salary.selected) # this works - the commas are gone

name department_name total.earnings
1 Abadi,Kidani A Assessing Department $46591.98
2 Abasciano, Joseph Boston Police Department $97579.88
3 Abban,Christopher John Boston Fire Department $124623.25
4 Abbasi,Sophia Green Academy $18249.83
5 Abbate-Vaughn,Jorgelina BPS Ellis Elementary $85660.28
6 Abberton,James P Public Works Department $50337.63

The dollar sign $ is trickier. Let’s try doing the exact same thing, except let’s set pattern = '$' instead of

pattern = ',

salary.selected$total.earnings <- str_replace(
salary.selected$total.earnings, # column we want to search
pattern = '$', # what to find
replacement = '' # what to replace it with

)

Using head () to visually inspect salary.selected, we see that the dollar signs are still there:

head(salary.selected) # this didn't work - the dollar signs are still there

name department_name total.earnings
1 Abadi,Kidani A Assessing Department $46591.98
##t 2 Abasciano, Joseph Boston Police Department $97579.88
3 Abban,Christopher John Boston Fire Department $124623.25
4 Abbasi,Sophia Green Academy $18249.83
5 Abbate-Vaughn,Jorgelina BPS Ellis Elementary $85660.28
6 Abberton,James P Public Works Department $50337.63

$ is known as a “special character” or “metacharacter”; along with * + . 2 [1 =~ { } | () \). Dealing
with these is a bit complicated (more info on them here), but basically if we want R to literally find a dollar
sign, $, in salary$total.earnings, we can add two backslashes before the dollar sign: \\$, which lets R
know to ignore or “escape” the special attributes of $ on its own.

http://stat545.com/block022_regular-expression.html

salary.selected$total.earnings <- str_replace(
salary.selected$total.earnings, # column we want to search
pattern = '\\$', # what to find
replacement = '' # what to replace 1t with

)

Using head () to visually inspect salary.selected, we see that the dollar signs are gone:

head(salary.selected)

name department_name total.earnings
1 Abadi,Kidani A Assessing Department 46591.98
2 Abasciano,Joseph Boston Police Department 97579.88
3 Abban,Christopher John Boston Fire Department 124623.25
4 Abbasi,Sophia Green Academy 18249.83
5 Abbate-Vaughn,Jorgelina BPS Ellis Elementary 85660.28
6 Abberton,James P Public Works Department 50337.63

Now can we use arrange() to sort the data by total.earnings?

salary.sort <- arrange(salary.selected,
total.earnings)

Let’s take a look at salary.sort, using head():

head(salary.sort)

name department_name total.earnings
1 Charles,Yveline BPS Transportation 10.07
2 Jean Baptiste,Hugues BPS Transportation 10.12
3 Piper,Sarah A BPS Transportation 10.47
4 Laguerre,Yolaine M BPS Transportation 10.94
5 Mayo,Wanda M Food & Nutrition Svc 100.00
6 Rosario Severino,Yomayra Food & Nutrition Svc 100.00

What’s the problem?

Again, we can use the class() function to check on how the total.earnings variable is encoded.

class(salary.selected$total.earnings) # a character, not numeric

[1] "character"

It’s a “character” now (still not numeric), because we didn’t tell R that it should be numeric. We can do this
with as.numeric():

salary.selected$total.earnings <- as.numeric(salary.selected$total.earnings)

Now let’s run class() again:

class(salary.selected$total.earnings)

[1] "numeric"

Now let’s sort using arrange():

salary.sort <- arrange(salary.selected,
total.earnings)

head(salary.sort) # ascending order by default

name department_name total.earnings

1 Jameau,Bernadette BPS Transportation 2.14
2 Bridgewaters,Sandra J BPS Transportation 2.50
3 Milian,Sonia Maria BPS Transportation 3.85
4 Burke II,Myrell Nadine BPS Transportation 4.38
5 Gillard Jr.,Trina F Food & Nutrition Svc 5.00
6 Lucas,Mona-Lisa L. Food & Nutrition Svc 5.36

One last thing: we have to specify desc(total.earnings) within arrange () because the function by default
sorts the data in ascending order.

salary.sort <- arrange(salary.selected,
desc(total.earnings)) # descending order

head(salary.sort) # Watman Lee from the Boston PD %s the highest paid city employee

name department_name total.earnings
1 Lee,Waiman Boston Police Department 403408.6
2 Josey,Windell C. Boston Police Department 396348.5
3 Painten,Paul A Boston Police Department 373959.3
4 Brown,Gregory Boston Police Department 351825.5
5 Hosein,Haseeb Boston Police Department 346105.2
6 Kervin,Timothy M. Boston Police Department 343818.2

We see that Waiman Lee from the Boston PD is the top earner with >403,408 per year, just as the Boston
Globe article states.

The Boston Police Department has a lot of high earners. We can figure out the average earnings by department,
which we’ll call average.earnings, by using the group_by() and summarise() functions in dplyr.

Now would be a good time to introduce %>%, known as the pipe operator.

%>% is an extremely valuable tool in R, because it allows functions to be chained rather than nested. %>%
looks strange but can be read as “then”—it tells R to do whatever comes after it to the stuff comes before it.

salary.average <- salary.selected %>% # take the salary.selected data frame, THEN
group_by(department_name) %>% # group by department_name, THEN
summarise (average.earnings = mean(total.earnings)) # calculate the mean of total.earnings for each de
If we were to do this without piping, it would look like

summarise (group_by(salary.selected, department_name), average.earnings = mean(total.earnings))

Let’s look at salary.average using head():

head(salary.average) # first siz rTows of average salary by department (alphabetical order)

A tibble: 6 x 2

department_name average.earnings
<fctr> <dbl>
1 Accountability 102073.28
2 Achievement Gap 60105.52
3 Alighieri Montessori School 55160.03
4 ASD Human Resources 67236.15
5 ASD Intergvernmtl Relations 83787.58
6 ASD Office of Budget Mangmnt 73946 .04

We can find the Boston Police Department using filter():

https://www.bostonglobe.com/metro/2017/02/14/police-detective-tops-boston-payroll-with-total-over/6PaXwTAHZGEW5djgwCJuTI/story.html

salary.average %>/ filter(department_name == 'Boston Police Department')

A tibble: 1 x 2

department_name average.earnings
<fctr> <dbl>
1 Boston Police Department 124787.2

Exercise: The salary.average data frame is currently ordered alphabetically by department.
How would you sort this dataset by average earnings, from highest to lowest?

2. Merging datasets

Now we have two main datasets, salary.sort (the salary for each person, sorted from high to low) and
salary.average (the average salary for each department). What if T wanted to merge these two together, so
I could see side-by-side each person’s salary compared to the average for their department?

We want to join by the department_name variable, since that is consistent across both datasets. Let’s put
the merged data into a new dataframe, salary.merged:

salary.merged <- merge(x = salary.sort, y = salary.average, by = 'department_name')

Now we can see the department average, salary.average, next to the individual’s salary, total.earnings:

head(salary.merged)

department_name name total.earnings
1 Accountability Guttenberg,Nicole Desiree 120132.7
2 Accountability Hedley-Mitchell,Angela E 120373.0
3 Accountability Martin,Dean M. 117132.9
4 Accountability Solomon,Stacey L. 109129.7
5 Accountability Lipkin,Linda S 115418.4
6 Accountability Anderson,Daniel 108408.9
average.earnings
1 102073.3
2 102073.3
3 102073.3
4 102073.3
5 102073.3
6 102073.3

3. Reshaping data
Here’s a dataset on unemployment rates by country from 2012 to 2016, from the International Monetary
Fund’s World Economic Outlook database (available here).

When you download the dataset, it comes in an Excel file. We can use the read_excel () from the readxl
package to load the file into R.

We load the readx1 package using library('readxl'):

install.packages('readzl') # if you don't already have the package
library('readxl') # load the readzl package

unemployment <- read_excel('unemployment.xlsx')

https://www.imf.org/external/pubs/ft/weo/2017/01/weodata/index.aspx

Right now, the data are in what’s commonly referred to as “wide” format, meaning the variables (unemployment
rate for each year) are spread across rows. This might be good for presentation, but it’s not great for certain
calculations or graphing. “Wide” format data also becomes confusing if other variables are added.

We need to change the format from “wide” to “long,” meaning that the columns (2012, 2013, 2014, 2015,
2016) will be converted into a new variable, which we’ll call Year, with repeated values for each country.
And the unemployment rates will be put into a new variable, which we’ll call Rate.Unemployed.

We'd like the data to look like this:

A tibble: 10 x 3
Country Year Rate.Unemployed

<chr> <chr> <chr>
1 Albania 2012 13.4
2 Albania 2013 16
3 Albania 2014 17.5
4 Albania 2015 17.1
5 Albania 2016 16.1
6 Algeria 2012 11
7 Algeria 2013 9.829000000000001
8 Algeria 2014 10.6
9 Algeria 2015 11.214
10 Algeria 2016 10.498

To do this, we’ll use the gather () function in tidyr to create a new data frame, unemployment.long.
We load the tidyr package using library('tidyr'):

install.packages('tidyr')

library('tidyr') # load the tidyr package

unemployment.long <- gather (unemployment, # data to reshape
Year, # column we want to create from the rows
Rate.Unemployed, # the wvalues of interest
-Country # already a column in the data

)

Inspecting unemployment .long using head () shows that we have successfully created a long dataset.

head (unemployment.long)

A tibble: 6 x 3

Country Year Rate.Unemployed
<chr> <chr> <chr>
1 Albania 2012 13.4
2 Algeria 2012 11
3 Argentina 2012 7.2
4 Armenia 2012 17.3
5 Australia 2012 5.217
6 Austria 2012 4.933

But there’s a problem. Rate.Unemployed is not recognized as a numeric variable.

class(unemployment.long$Rate.Unemployed) ## "character", not "numeric"

[1] "character"
Why do you think this is? (hint, use head() to find out)

We can use as.numeric() to convert Rate.Unemployed to a numeric variable.

unemployment.long$Rate.Unemployed <- as.numeric(unemployment.long$Rate.Unemployed)

Warning: NAs introduced by coercion

str() is another way to check how variables are encoded. It returns the structure of the entire dataset:

str(unemployment.long) # Rate.Unemployed %s mow "num", which stands for "numeric"

Classes 'tbl_df', 'tbl' and 'data.frame': 560 obs. of 3 variables:
§ Country : chr "Albania" "Algeria" "Argentina" "Armenia"
$ Year : chr "2012" "2012" "2012" "2012"

$ Rate.Unemployed: num 13.4 11 7.2 17.3 5.22 ...

4. Calculating year-over-year change in panel data

Sort the data by Country using the arrange() function in dplyr:

unemployment.long <- arrange(unemployment.long, # data frame to sort
Country, Year) # wariables to sort by

The above code is equivalent to the following, which uses the pipe operator, %>%:

unemployment.long <- unemployment.long %>% # Take the unemployment.long data frame, THEN
arrange (Country, Year) # sort it by Country and then Year.

Now let’s use head () to inspect the unemployment.long, but instead of the first six rows (the default), let’s
look at the first five:

head (unemployment.long, 5) # First five rows of the data

A tibble: 5 x 3
Country Year Rate.Unemployed

<chr> <chr> <dbl>
1 Albania 2012 13.4
2 Albania 2013 16.0
3 Albania 2014 17.5
4 Albania 2015 17.1
5 Albania 2016 16.1

This type of data is known in time-series analysis as a panel; each country is observed every year from 2012
to 2016.

For Albania, the percentage point change in unemployment rate from 2012 to 2013 would be 16 - 13.4 = 2.5
percentage points. What if I wanted the year-over-year change in unemployment rate for every country?

This is an example where having a tidy dataset really helps. We can use the mutate () function in dplyr to
create a new variable, Change, which is the difference between Rate.Unemployed and lag(Rate.Unemployed)
(the default for 1lag() is 1 position, which is good for us since we want the change from the previous year).

unemployment.long <- unemployment.long %>}, # take the unemployment.long dataset, THEN
mutate(Change = Rate.Unemployed - lag(Rate.Unemployed)) # create a wariable called Change

Let’s inspect the first five rows again, using head ():

head (unemployment.long, 5)

A tibble: 5 x 4
Country Year Rate.Unemployed Change
<chr> <chr> <dbl> <dbl>

1 Albania 2012 13.4 NA

2 Albania 2013 16.0 2.6
3 Albania 2014 17.5 1.5
4 Albania 2015 17.1 -0.4
5 Albania 2016 16.1 -1.0

So far so good. It also makes sense that Albania’s Change is NA in 2012, since the dataset doesn’t contain any
unemployment figures before the year 2012.

But a closer inspection of the data reveals a problem. What if we used tail() to look at the last 5 rows of
the data?

tail (unemployment.long, 5)

A tibble: 5 x 4
Country Year Rate.Unemployed Change

<chr> <chr> <dbl> <dbl>
1 Vietnam 2012 2.74 -18.493
2 Vietnam 2013 2.75 0.010
3 Vietnam 2014 2.05 -0.700
4 Vietnam 2015 2.40 0.350
5 Vietnam 2016 2.40 0.000

Why does Vietnam have a -18.493 percentage point change in 20127

unemployment.long <- unemployment.long %>%
group_by (Country) %>%
mutate(Change = Rate.Unemployed - lag(Rate.Unemployed))

tail (unemployment.long, 5)

Source: local data frame [5 x 4]

Groups: Country [1]

##

A tibble: 5 x 4

Country Year Rate.Unemployed Change

#t <chr> <chr> <dbl> <dbl>
1 Vietnam 2012 2.74 NA
2 Vietnam 2013 2.75 0.01
3 Vietnam 2014 2.05 -0.70
4 Vietnam 2015 2.40 0.35
5 Vietnam 2016 2.40 0.00

5. Recoding numerical variables into categorical ones

Here’s a list of some attendees for today’s workshop, with names and contact info removed.

attendees <- read.csv('attendees.csv', stringsAsFactors = F)

head (attendees)

Occupation Job.title Age.group Gender
1 Data Analyst Data Quality Analyst 30-39 Male
2 PhD Student Student/Research Assistant 18-29 Male
3 Education Data Analyst 18-29 Female
4 Manager BAS Manager 30-39 Male
5 Government Finance Performance Analyst 30 - 39 Male
6 Engineer Display Engineer 30-39 Female

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

DO WN

OO WN -

DO WN - DO WN - OO WN DO WN -

DS W NN -

State.Province Education
MA Bachelor's Degree

MA Bachelor's Degree

Kentucky Master's Degree

MA Bachelor's Degree

MA Master's Degree

MA Bachelor's Degree

Which.data.subject.area.are.you.most.interested.in.working.with...

Explore the field of data storytelling, including career options, Improve my ability to write with

Select.up.to.three.
Retail

Sports

Retail

Education

Environment, Finance, Food and agriculture
Environment, Finance, Food and Agriculture

Boston University

Boston University

Which.type.of.laptop.will.you.bring. College.or.University.Name

PC

PC

PC

PC

MAC

Advanced Data Storytelling
Major.or.Concentration College.Year
Biostatistics PhD
PEMBA Graduate

Which.Digital.Badge.track.best.suits.you.

Advanced Data Storytelling

Advanced Data Storytelling

Advanced Data Storytelling

Advanced Data Storytelling

Advanced Data Storytelling

Advanced Data Storytelling
Which.session.would.you.like.to.attend.

June 5-

June 5-

June 5-

June 5-

5_

© O O © ©

June
June 5-9
Choose.your.status.

Nonprofit, Academic, Government
Student
Nonprofit, Academic, Government
Student

10

5 Nonprofit, Academic, Government Early Bird
6 Professional

What if we wanted to quickly see the age distribution of attendees?

table(attendees$Age.group)

##
18-29 30 - 39 30-39
4 1 7

There’s an inconsistency in the labeling of the Age.group variable here. We can fix this using ifelse() by
replacing the “30 - 39” with “30-39”:

attendees$Age.group <- ifelse(attendees$Age.group == '30 - 39', # if attendees$lge.group == '30 - 39'
'30-39', # replace attendees$Age.group with '30-39'
attendees$Age.group) # otherwise, keep attendees$Adge.group values the sam

This might seem trivial for just one value, but it’s useful for larger datasets.

table(attendees$Age.group)

##
18-29 30-39
4 8

Now let’s take a look at the professional status of attendees, labeled in Choose.your.status.:

table(attendees$Choose.your.status.)

##

#i#t Nonprofit, Academic, Government
3
Nonprofit, Academic, Government Early Bird
1
Professional
3
Student
5

“Nonprofit, Academic, Government” and “Nonprofit, Academic, Government Early Bird” seem to be the
same. We can use ifelse() (and the R designation | for “or”) to combine these two categories into one big
category, “Nonprofit/Gov”. Let’s create a new variable, status, for our simplified categorization.

attendees$status <- ifelse(attendees$Choose.your.status. == 'Nonprofit, Academic, Government' |
attendees$Choose.your.status. == 'Nonprofit, Academic, Government Early Bi:
'"Nonprofit/Gov',

attendees$Choose.your.status.)
table(attendees$status)

##

Nonprofit/Gov Professional Student
4 3 5
What else?

o How would you use ifelse() and | to create a new variable in the attendees data (let’s call it
status?2) that has just two categories, “Student” and “Other”?

e How would you rename the variables in the attendees data to make them easier to work with?

11

o What are some other issues with this dataset? How would you solve them using what we’ve learned?

e What are some other “messy” data issues you’ve encountered?

12

	1. Finding and replacing non-numeric characters like , and $
	2. Merging datasets
	3. Reshaping data
	4. Calculating year-over-year change in panel data
	5. Recoding numerical variables into categorical ones
	What else?

